首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   10篇
  国内免费   1篇
测绘学   7篇
大气科学   24篇
地球物理   83篇
地质学   76篇
海洋学   36篇
天文学   27篇
综合类   2篇
自然地理   19篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   7篇
  2020年   12篇
  2019年   10篇
  2018年   11篇
  2017年   10篇
  2016年   17篇
  2015年   15篇
  2014年   13篇
  2013年   12篇
  2012年   14篇
  2011年   18篇
  2010年   16篇
  2009年   22篇
  2008年   17篇
  2007年   10篇
  2006年   7篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
排序方式: 共有274条查询结果,搜索用时 9 毫秒
271.
272.
León valley, located in the Mexican state of Guanajuato, has a long history (35+ a) of Cr contamination of groundwater and surface water. Here data are presented for Cr, major ion and trace element concentrations and Cr stable isotope measurements of groundwater in a heavily contaminated aquifer in Buenavista, where Cr ore processing residue piles (COPRPs) located in a chromate production factory are the main source of Cr. The aquifer directly beneath the factory still retains very high Cr(VI) concentrations (∼121 mg/L). Ongoing pump and treat remediation is keeping the high concentration plume confined to the factory area and immediate vicinity, though Cr is also detected at some distance away. Chromium isotope data of the aquifer directly under the factory show only a small increase in δ53Cr (+0.33‰ to +0.81‰) and indicates minimal reduction of Cr(VI) to Cr(III). Very high Cr(VI) concentrations have possibly overwhelmed natural reductants and furthermore fresh Cr(VI) was being leached into the groundwater from the COPRP. From just one year of Cr isotope data it is clear that more aggressive remediation techniques will be necessary to reduce or eliminate the contamination. The fringes of the Cr plume have substantially lower concentrations and can be partially explained by transport of the main plume or mixing between waters from the nearby landfill and highly contaminated waters from QC. While the source of Cr at the fringes of the plume could be attributed to a source from the nearby landfill instead of the main plume from the factory, the Cr stable isotope data show enrichment in the heavier isotopes and point to varying amounts of reduction. Isotopic enrichment seen between 2007 and 2008 along the fringe may indicate either reduction or less unreacted Cr(VI) is being transported to the fringes. In either case some potential for natural attenuation of Cr(VI) exists at the western margin of the plume with the landfill playing a role.  相似文献   
273.
Erosion calderas: origins, processes, structural and climatic control   总被引:1,自引:0,他引:1  
 The origin and development of erosion-modified, erosion-transformed, and erosion-induced depressions in volcanic terrains are reviewed and systematized. A proposed classification, addressing terminology issues, considers structural, geomorphic, and climatic factors that contribute to the topographic modification of summit or flank depressions on volcanoes. Breaching of a closed crater or caldera generated by volcanic or non-volcanic processes results in an outlet valley. Under climates with up to ∼2000–2500 mm annual rainfall, craters, and calderas are commonly drained by a single outlet. The outlet valley can maintain its dominant downcutting position because it quickly enlarges its drainage basin by capturing the area of the primary depression. Multi-drained volcanic depressions can form if special factors, e.g., high-rate geological processes, such as faulting or glaciation, suppress fluvial erosion. Normal (fluvial) erosion-modified volcanic depressions the circular rim of which is derived from the original rim are termed erosion craters or erosion calderas, depending on the pre-existing depression. The resulting landform should be classed as an erosion-induced volcanic depression if the degradation of a cluster of craters produces a single-drained, irregular-shaped basin, or if flank erosion results in a quasi-closed depression. Under humid climates, craters and calderas degrade at a faster rate. Mostly at subtropical and tropical ocean-island and island-arc volcanoes, their erosion results in so-called amphitheater valleys that develop under heavy rainfall (>∼2500 mm/year), rainstorms, and high-elevation differences. Structural and lithological control, and groundwater in ocean islands, may in turn preform and guide development of high-energy valleys through rockfalls, landsliding, mudflows, and mass wasting. Given the intense erosion, amphitheater valleys are able to breach a primary depression from several directions and degrade the summit region at a high rate. Occasionally, amphitheater valleys may create summit depressions without a pre-existing crater or caldera. The resulting, negative landforms, which may drain in several directions and the primary origin of which is commonly unrecognizable, should be included in erosion-transformed volcanic depressions. Received: 4 January 1998 / Accepted: 18 January 1999  相似文献   
274.
To design and review the operation of spillways, it is necessary to estimate design hydrographs, considering their peak flow, shape and volume. A hybrid method is proposed that combines the shape of the design hydrograph obtained with the UNAM Institute of Engineering Method (UNAMIIM) with the peak flow and volume calculated from a bivariate method. This hybrid method is applied to historical data of the Huites Dam, Sinaloa, Mexico. The goal is to estimate return periods for the maximum discharge flows (that account for the damage caused downstream) and the maximum levels reached in the dam (measure of the hydrological dam safety) corresponding to a given spillway and its management policy. Therefore, to validate the method, the results obtained by the flood routing of the 50-year hydrograph are compared with those obtained by the flood routing of the three largest historical floods. Both maximum flow and elevation were in the range of values observed within 37.5–75 years corresponding to the length of the historical record.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号